Subbotina linaperta Finlay 1939 from: Pearson, P.N.Olsson, R.K.Hemleben, C.Huber, B.T.Berggren, W.A. (2006): Atlas of Eocene Planktonic Foraminifera. p. 1-513 . |
Notice: This catalogue page may contain unedited data.
|
Species Subbotina linaperta Finlay 1939 |
|
|
Diagnosis / Definition: |
Pearson et al. (2006):
DESCRIPTION.
Type of wall: Coarsely and symmetrically
cancellate, normal perforate, spinose, sacculifer-type
wall texture.
Test morphology: Test low trochospiral,
globular, rounded in outline, chambers globular; in spiral
view 3-3 1/3 globular, embracing chambers in ultimate
whorl, increasing rapidly in size, sutures slightly to
moderately depressed, straight to slightly curved,
ultimate chamber broader than high, presenting a
flattened appearance; in umbilical view 3-3 1/3 globular,
embracing chambers, increasing rapidly in size, sutures
moderately depressed, straight to slightly curved,
umbilicus very small, enclosed by surrounding chambers, aperture umbilical to somewhat
extraumbilical, bordered by a thin, even lip, ultimate
chamber broader than high, presenting a flattened
appearance; in edge view chambers globular in shape,
embracing; aperture visible as a low arch, bordered by a
thin, even lip, ultimate chamber broader than high,
presenting a flattened appearance.
Size: Maximum diameter of neotype 0.38 mm,
thickness 0.27 mm. |
Discussion / Comments: |
Pearson et al. (2006):
DISTINGUISHING FEATURES.
Differs from
Subbotina utilisindex and Subhotina triloculinoides by
having (1) a larger and more compressed final chamber,
(2) less compact coiling, (3) a more highly arched
aperture and extra-umbilical position of its aperture, (4)
a better developed apertural lip, (5) a more coarsely
cancellate wall texture, and (6) a much larger size of the
final chamber relative to the penultimate chamber; differs
from Subbotina eocaena (Guembel) by the faster rate
of chamber size increase, 3-3 1/2 rather than 4 chambers
in the final whorl, equatorial flattening of final whorl
chambers, and shallower umbilicus; differs from
Subbotina tviangularis by tighter coiling of final whorl
chambers; differs from Subbotina velascoensis by having
a less coarsely cancellate test.
DISCUSSION.-
The morphologic variability of forms
included in this taxon is exemplified by comparison of
a paratype and topotype specimen (Pl. 6.14, Figs. 1-4),
which show varying degrees of equatorial flattening of
the final whorl chambers and variable rates of chamber
size increase in the final whorl. Some authors (e.g.,
Huber, 1991 ; Berggren, 1 992) distinguish sensu stricto
forms in which the final chamber exhibits flattening.
Morphologic intergradation with the ancestral and
descendent forms has been noted by several authors (e.g.,
Blow, 1979: 1278; Stainforth and others, 1975:202). Jenkins (1 971) noted that Subbotina linaperta
in New Zealand was limited to the middle to upper
Eocene. The species was found only in the middle
Eocene by Krasheninnikov and Basov (1983) at DSDP
Site 5 12, Falkland Plateau, South Atlantic Ocean. Stott
and Kennett (1990) established that the last occurrence
of S. linaperta was at the middlelupper Eocene boundary
at Leg 113 drill sites in the Weddell Sea, Antarctic Ocean.
Huber (1 99 1) also recorded S. linaperta s.s. only in the
middle Eocene at Hole 738A, Kerguelen Plateau,
southern Indian Ocean, and Berggren (1 992) noted that
the species disappeared at the middlelupper Eocene
boundary at ODP Holes 748B and 749B on the southern
Kerguelen Plateau. Thus, it appears, as Krasheninnikov
and Basov surmised that climatic factors prevented S.
linaperta from occupying high southern latitude waters
in the late Eocene. In the low latitudes of the southern
hemisphere Belford (1984) recorded S. linaperta in the
lower Eocene (Zone P819) i&Papua, New Guinea.
The range of S. linaperta in the northern
hemisphere is somewhat equivocal. Bronnimann (1952)
considered S. linaperta a dominant species of the
Paleocene of Trinidad. Although he referred to the
peripheral flattening of chambers, the specimen he
figured (his pi. 2, figs.7-9) does not show the characteristic morphology of this species and is more
openingly coiled than is the case for S. linaperta. This
specimen is probably S. triangularis (White), which is
very common in the upper Paleocene of Trinidad. Bolli
(1957) also identified S. linaperta in the upper Paleocene
of Trinidad, but the specimen he illustrated (his pl. 15,
figs. 15-17) does not exhibit the flattened chambers
typical of S. linaperta. Bolli's hypotype, here illustrated
for the first in SEM (Plate 6.15, Figs. 12, 16), shows
morphological characteristics of S. patagonica, which
is interpreted as the ancestral species of S. linaperta.
Subbotina linaperta belongs to a group of
coarse, symmetrically cancellate, tightly coiled subbotinids that includes S. patagonica (Todd and
Kniker) and S. velascoensis (Cushman). Although S.
linaperta is morphologically close to S. velascoensis, in
that both possess laterally compressed or flattened
chambers, the latter species goes extinct in Zone P5 (=
E112) below the first occurrence of S. linaperta in Zone
P7 (= E5). Subbotinapatagonica ranges into the lower
Eocene and is probably the ancestor of S. linaperta.
Jenkins (1971) figured a topotype specimen of S.
linaperta (his pl. 18, fig. 554) with a bulla-like ultimate
chamber and Belford (1984) also figured such
specimens. This is also a feature that is observed in S.
velascoensis (see Olsson and others, 1999, pl. 29, fig.
8). Blow (1 979) illustrated a number of specimens to
show his view of the range of morphological variation
in S. linaperta, but these specimens (his pl. 9 1, fig. 8;
pl. 158, fig. 8; pl. 160, figs. 6-8; pl. 177, fig. 4-6; pl.
240, figs. 5,6) are more loosely coiled forms and do not
have the coarse, symmetrical cancellate wall texture of
S. linaperta. The specimen from 'Zone P7' illustrated
on his pl. 124, fig. 9, although not well preserved, is
more tightly coiled and has a symmetrical wall texture,
and may represent this species, although this specimen
is not as coarsely cancellate as in typical S. linaperta.
In the northern hemisphere S. linaperta has been
widely recorded in the middle and upper Eocene. The
lowest record of the species is in Zone P7 (Snyder and
Waters, 1985) and in the southern hemisphere it has been
identified in Zone P819 by Belford (1984). It would
appear that linkage between S. patagonica and S.
linaperta lies in low latitude sections since in mid and
high latitude sections S. linaperta does not appear until
the middle Eocene.
PHYLOGENETIC RELATIONSHIPS.-
Subbotina
linaperta belongs to a group of tightly coiled subbotinids
with a coarse, symmetrical cancellate wall texture.
Species in this group include S. velascoensis, S. patagonica, S. angiporoides (Hornibrook), and S. utilisindex (Jenkins and Orr). Tt appears that S. linaperta is derived from S. patagonica by flattening of chambers and rotation of the aperture to a more extraumbilical
position.
GEOGRAPHIC DISTRIBUTION.-
Cosmopolitan. Particularly common during the middle Eocene at southern, high latitudes.
STABLE IS0TOPE PALEOBIOLOGY.-
Poore and Matthews (1 984) and Pearson and others (1 993) recorded stable isotope signatures that indicate that the adult S. linaperta lived near the thermocline. |
Systematics: |
1 Superregnum Eukaryota
Regnum Protoctista
Phylum Ciliophora
Subphylum Postciliodesmatophora
Ordo Globigerinida
Superfamilia Globigerinaceae
Superfamilia Nonionacea
Familia Eoglobigerinidae
Familia Globigerinidae
Genus Subbotina
Species Subbotina linaperta
35 Ordo Foraminiferida
Superfamilia Globigerinaceae
Familia Globigerinidae
Genus Subbotina
Species Subbotina linaperta
|
Synonym list: |
Pearson et al. (2006):
1939 Globigerina linaperta Finlay. - Finlay : p.125 pl. 23; fig. 54-57 [middle Eocene, Bortonian Stage, Hampden section, South
Island, New Zealand]
1962 Globigerina linaperta Finlay. - Gohrhandt : p.104 pl. 7; fig. 4a-c [upper Eocene, Bruderndorf, Austria]
1962 Globigerina linaperta Finlay. - Saito : p.216 pl. 32; fig. 4a-c [middle Eocene Zone
E12, Haha-Jima, Bonin Islands, western Pacific Ocean]
1966 Globigerina linaperta Finlay. - McTavish : p.24 pl. 2; fig. 29, 31-33 [upper Eocene,
Priabonian, British Solomon Islands, western Pacific
Ocean]
? 1972 Subbotina oregonensis McKeel & Lipps. - McKeel & Lipps : p.81 pl. 4; fig. 3a-c [middle to upper Eocene Coaledo Fm., Oregon]
p 1975 Globigerina linaperta Finlay. - Stainforth et al. : p.201 fig. 63, 1a-c (partim; not fig.
63, 2-5), (reillustration of holotype)
1975 Globigerina linaperta Finlay. - Toumarkine : p.742 pl. 1; fig. 1, 2 [middle Eocene
Zone El011 l , DSDP Site 313, northeastern Mid-Pacific
Mountains, western Pacific Ocean]
1977 Subbotina linaperta Finlay. - Poore & Brabb : p.269 pl. 5, fig. 8 [upper Eocene Zone E14/15, Twobar shale Member, San Lorenzo Fm., Santa Cruz Mountains, California];
pl. 5, fig. 9 [middle Eocene Zone P13114,
Butano Sandstone, Santa Cruz Mountains, California]
p 1979 Subbotina linaperta Finlay. - Blow : p.1275 pl. 124; fig. 9 [lower Eocene Zone E5, DSDP Hole 47.2,
Shatsky Rise, northwest Pacific Ocean] [Not pl. 91: fig.
8; pl. 158: fig. 8; pl. 160, figs. 6-8; pl. 177: figs. 4-6; pl.
240: Figs. 5, 6.]
1983 Globigerina linaperta Finlay. - Krasheninnikov & Basov : p.838 pl. 2; fig. 8-11 [middle Eocene,
DSDP Site 5 11, Falkland Plateau, South Atlantic Ocean]
1984 Subbotina linaperta Finlay. - Belford : p.14 pl. 23; fig. 9-15 [lower Eocene Zone
E617, Papua, New Guinea]
1985 Globigerina linaperta Finlay. - Snyder & Waters : p.463 pl. 2; fig. 1-3 [lower
Eocene Zone E5, DSDP Hole 548A, Goban Spur, eastern North Atlantic Ocean]
1990 Subbotina linaperta Finlay. - Stott & Kennett : p.559 pl. 7; fig. 9 [middle Eocene Zone AE8, ODP Hole 689B,
Maud Rise, Weddell Sea, Antarctic Ocean]
1991 Subbotina linaperta Finlay. - Huber : p.440 pl. 5; fig. 1 [middle Eocene Zone AE8, ODP
Hole 738B, Kerguelen Plateau, southern Indian Ocean]
1992 Subbotina linaperta Finlay. - Berggren : p.583 pl. 3; fig. 1-4 [middle Eocene, ODP
Hole 748B, southern Kerguelen Plateau, southern Indian
Ocean]
2006 Subbotina linaperta Finlay. - Pearson et al. : p.144 pl. 6.14; fig. 1-16 (Pl. 6.14, Figs. 1-3: new SEMs of paratype of Globigerina linaperta Finlay)
|
Specimen: |
Geological and Nuclear Science Institute, Lower Hutt, New Zealand, Inventory number: TF 1078/1
|
References: |
Finlay,H.J. (1939): New Zealand foraminifera; key species in stratigraphy, No. 1 . Transactions of the Royal Society of New Zealand Vol. 68
Khalilov,D.M. (1956): O pelagicheskoy faune foraminifer Paleogenovykh otlozheniy Azerbaydzhana . Trudy Instituta Geologii, Akademiya Nauk Azerbaydzhanskoy SSR Vol. 17
Hornibrook,N. (1958): New Zealand foraminifera: key species in stratigraphy, no. 6 . N.Z.J. Geol. Geophys. Vol. 4
Saito,T. (1962): Eocene planktonic foraminifera from Hahajima (Hillsborough Island) . Trans. Proc. Paleontol. Soc. Japan, news series Vol. 45 p. 209-225
Gohrhandt,K.H.A.. (1962): Die Kleinforaminiferenfauna des obereozanen Anteils der Reingruber Serie bei Bruderndorf (Bezirk Korneuburg, Niederösterreich) . Mitteilungen der Geologischen Gesellschaft in Wien Vol. 56 p. 55-145
McTavish,R.A.. (1966): Planktonic foraminifera from the Malaita Group, British Solomon Islands . Micropaleontology Vol. 12 p. 1-36
Jenkins,D.G. (1971): New Zealand Cenozoic Planktonic Foraminifera . New Zealand Geological Survey Paleontological Bulletin Vol. 42
McKeel,D.R.. and Lipps,J.H. (1972): Calcareous plankton from the Tertiary of Oregon . Palaeogeography, Palaeoclimatology, Palaeoecology Vol. 12 p. 75-93
Toumarkine,M. (1975): Middle and Late Eocene planktonic foraminifera from the northwestern Pacific, Leg 32 of the Deep Sea Drilling Project. In: Initial Reports of the Deep Sea Drilling Project Vol. 32 Eds: Larson, R.L.Moberly, R. p. 735-751
Stainforth,R.M.; Lamb,J.L.; Luterbacher,H.P.; Beard,J.H. and Jeffords,R.M. (1975): Cenozoic planktonic foraminiferal zonation and characteristics of index forms . Paleontological ContributionsArticle 62 p. 425
Hillebrandt,A. (1976): Los formainiferos planctonicos, nummulitidos y coccolitoforidos de las zona de Globorotalia palmerae del Cuisiense (Eoceno inferior) en el ES de Espana (Provincias de Murcia y Alicante) . Revista Espanol de Micropaleontologia Vol. 8 p. 323-394
Poore,R.Z. and Brabb,E.E.. (1977): Eocene and Oligocene planktonic foraminifera from the Upper Butano Sandstone and type San Lorenzo Formation, Santa Cruz Mountains, California . Journal of Foraminiferal Research Vol. 7 p. 249-272
Blow,W.H. (1979): The Cainozoic Globigerinida. 3 Vols p. 1413 pp
Krasheninnikov,V.A. and Basov,I.A. (1983): Cenozoic planktonic foraminifers of the Falkland Plateau and Argentine Basin, Deep Sea Drilling Projejt Leg 71. In: Initial Reports of the Deep Sea Drilling Project Vol. 71 Eds: Ludwig, W.J.Krasheninninov, V.A. p. 821-845
Belford,D.J. (1984): Tertiary Foraminifera and Age of Sediments, Ok Tedi-Wabag, Papua, New Guinea . BureauMineral Resources, Geology and Geophysics, Australia Bulletin Vol. 216
Snyder,S.W. and Waters,V.J. (1985): Cenozoic planktonic foraminiferal biostratigraphy of the Goban Spur region. In: Deep Sea Drilling Project Vol. 80
Stott,L.D. and Kennett,J.P. (1990): Antarctic Paleogene planktonic foraminifer biostratigraphy:ODP Leg 113, Sites 689 and 690. In: Proceedings of the Ocean Drilling Program Vol. 113
Huber,B.T. (1991): Paleogene and early Neogene planktonic foraminifer biostratigraphy of Sites 738 and 744, Kerguelen Plateau (southern Indian Ocean). In: Proceedings of the Ocean Drilling Program, Scientific Results Vol. 119 Eds: Leckie, R.M.Sigurdsson, H.Acton, G.D.Draper, G. p. 427-449
Berggren,W.A. (1992): Paleogene Planktonic Foraminifera Magnetobiostratigraphy of the Southern Kerguelen Plateau (Sites 747-749). In: Proceedings of the Ocean Drilling Program, Scientific Results Vol. 120
Pearson,P.N.; Olsson,R.K.; Hemleben,C.; Huber,B.T. and Berggren,W.A. (2006): Atlas of Eocene Planktonic Foraminifera. p. 1-513
|
This work is licensed under a Creative Commons Attribution 2.5 License.
|
|