Taxon Concept provided by | |
Home | Search |
TaxonConcept data set details: | ||||||
Back to Search | ||||||
Anonymous: Unedited TaxonConcept data | ||||||
Notice: This catalogue page may contain unedited data.
| ||||||
Species Subbotina linaperta Finlay 1939 | ||||||
|
||||||
Diagnosis / Definition: | ||||||
Pearson et al. (2006): DESCRIPTION. Type of wall: Coarsely and symmetrically cancellate, normal perforate, spinose, sacculifer-type wall texture. Test morphology: Test low trochospiral, globular, rounded in outline, chambers globular; in spiral view 3-3 1/3 globular, embracing chambers in ultimate whorl, increasing rapidly in size, sutures slightly to moderately depressed, straight to slightly curved, ultimate chamber broader than high, presenting a flattened appearance; in umbilical view 3-3 1/3 globular, embracing chambers, increasing rapidly in size, sutures moderately depressed, straight to slightly curved, umbilicus very small, enclosed by surrounding chambers, aperture umbilical to somewhat extraumbilical, bordered by a thin, even lip, ultimate chamber broader than high, presenting a flattened appearance; in edge view chambers globular in shape, embracing; aperture visible as a low arch, bordered by a thin, even lip, ultimate chamber broader than high, presenting a flattened appearance. Size: Maximum diameter of neotype 0.38 mm, thickness 0.27 mm. |
||||||
Discussion / Comments: | ||||||
Pearson et al. (2006): DISTINGUISHING FEATURES. Differs from Subbotina utilisindex and Subhotina triloculinoides by having (1) a larger and more compressed final chamber, (2) less compact coiling, (3) a more highly arched aperture and extra-umbilical position of its aperture, (4) a better developed apertural lip, (5) a more coarsely cancellate wall texture, and (6) a much larger size of the final chamber relative to the penultimate chamber; differs from Subbotina eocaena (Guembel) by the faster rate of chamber size increase, 3-3 1/2 rather than 4 chambers in the final whorl, equatorial flattening of final whorl chambers, and shallower umbilicus; differs from Subbotina tviangularis by tighter coiling of final whorl chambers; differs from Subbotina velascoensis by having a less coarsely cancellate test. DISCUSSION.- The morphologic variability of forms included in this taxon is exemplified by comparison of a paratype and topotype specimen (Pl. 6.14, Figs. 1-4), which show varying degrees of equatorial flattening of the final whorl chambers and variable rates of chamber size increase in the final whorl. Some authors (e.g., Huber, 1991 ; Berggren, 1 992) distinguish sensu stricto forms in which the final chamber exhibits flattening. Morphologic intergradation with the ancestral and descendent forms has been noted by several authors (e.g., Blow, 1979: 1278; Stainforth and others, 1975:202). Jenkins (1 971) noted that Subbotina linaperta in New Zealand was limited to the middle to upper Eocene. The species was found only in the middle Eocene by Krasheninnikov and Basov (1983) at DSDP Site 5 12, Falkland Plateau, South Atlantic Ocean. Stott and Kennett (1990) established that the last occurrence of S. linaperta was at the middlelupper Eocene boundary at Leg 113 drill sites in the Weddell Sea, Antarctic Ocean. Huber (1 99 1) also recorded S. linaperta s.s. only in the middle Eocene at Hole 738A, Kerguelen Plateau, southern Indian Ocean, and Berggren (1 992) noted that the species disappeared at the middlelupper Eocene boundary at ODP Holes 748B and 749B on the southern Kerguelen Plateau. Thus, it appears, as Krasheninnikov and Basov surmised that climatic factors prevented S. linaperta from occupying high southern latitude waters in the late Eocene. In the low latitudes of the southern hemisphere Belford (1984) recorded S. linaperta in the lower Eocene (Zone P819) i&Papua, New Guinea. The range of S. linaperta in the northern hemisphere is somewhat equivocal. Bronnimann (1952) considered S. linaperta a dominant species of the Paleocene of Trinidad. Although he referred to the peripheral flattening of chambers, the specimen he figured (his pi. 2, figs.7-9) does not show the characteristic morphology of this species and is more openingly coiled than is the case for S. linaperta. This specimen is probably S. triangularis (White), which is very common in the upper Paleocene of Trinidad. Bolli (1957) also identified S. linaperta in the upper Paleocene of Trinidad, but the specimen he illustrated (his pl. 15, figs. 15-17) does not exhibit the flattened chambers typical of S. linaperta. Bolli's hypotype, here illustrated for the first in SEM (Plate 6.15, Figs. 12, 16), shows morphological characteristics of S. patagonica, which is interpreted as the ancestral species of S. linaperta. Subbotina linaperta belongs to a group of coarse, symmetrically cancellate, tightly coiled subbotinids that includes S. patagonica (Todd and Kniker) and S. velascoensis (Cushman). Although S. linaperta is morphologically close to S. velascoensis, in that both possess laterally compressed or flattened chambers, the latter species goes extinct in Zone P5 (= E112) below the first occurrence of S. linaperta in Zone P7 (= E5). Subbotinapatagonica ranges into the lower Eocene and is probably the ancestor of S. linaperta. Jenkins (1971) figured a topotype specimen of S. linaperta (his pl. 18, fig. 554) with a bulla-like ultimate chamber and Belford (1984) also figured such specimens. This is also a feature that is observed in S. velascoensis (see Olsson and others, 1999, pl. 29, fig. 8). Blow (1 979) illustrated a number of specimens to show his view of the range of morphological variation in S. linaperta, but these specimens (his pl. 9 1, fig. 8; pl. 158, fig. 8; pl. 160, figs. 6-8; pl. 177, fig. 4-6; pl. 240, figs. 5,6) are more loosely coiled forms and do not have the coarse, symmetrical cancellate wall texture of S. linaperta. The specimen from 'Zone P7' illustrated on his pl. 124, fig. 9, although not well preserved, is more tightly coiled and has a symmetrical wall texture, and may represent this species, although this specimen is not as coarsely cancellate as in typical S. linaperta. In the northern hemisphere S. linaperta has been widely recorded in the middle and upper Eocene. The lowest record of the species is in Zone P7 (Snyder and Waters, 1985) and in the southern hemisphere it has been identified in Zone P819 by Belford (1984). It would appear that linkage between S. patagonica and S. linaperta lies in low latitude sections since in mid and high latitude sections S. linaperta does not appear until the middle Eocene. PHYLOGENETIC RELATIONSHIPS.- Subbotina linaperta belongs to a group of tightly coiled subbotinids with a coarse, symmetrical cancellate wall texture. Species in this group include S. velascoensis, S. patagonica, S. angiporoides (Hornibrook), and S. utilisindex (Jenkins and Orr). Tt appears that S. linaperta is derived from S. patagonica by flattening of chambers and rotation of the aperture to a more extraumbilical position. GEOGRAPHIC DISTRIBUTION.- Cosmopolitan. Particularly common during the middle Eocene at southern, high latitudes. STABLE IS0TOPE PALEOBIOLOGY.- Poore and Matthews (1 984) and Pearson and others (1 993) recorded stable isotope signatures that indicate that the adult S. linaperta lived near the thermocline. |
||||||
Systematics: | ||||||
1 Superregnum Eukaryota Regnum Protoctista Phylum Ciliophora Subphylum Postciliodesmatophora Ordo Globigerinida Superfamilia Globigerinaceae Superfamilia Nonionacea Familia Eoglobigerinidae Familia Globigerinidae Genus Subbotina Species Subbotina linaperta 35 Ordo Foraminiferida Superfamilia Globigerinaceae Familia Globigerinidae Genus Subbotina Species Subbotina linaperta |
||||||
Synonym list: | ||||||
Pearson et al. (2006): 1939 Globigerina linaperta Finlay. - Finlay : p.125 pl. 23; fig. 54-57 [middle Eocene, Bortonian Stage, Hampden section, South
Island, New Zealand]
1956 Globigerina posttriloculinoides Khalilov. - Khalilov : p.242 pl. 3; fig. 2a-c [middle Eocene, Maly Caucasus]
1956 Globigerina posttriloculinoides var. clinata Khalilov. - Khalilov : p.243 pl. 3; fig. 3a-c [upper Eocene, Maly Caucasus]
1958 Globigerina linaperta Finlay. - Hornibrook : p.33 pl. 1; fig. 19-21 (reillustration of holotype)
1962 Globigerina linaperta Finlay. - Gohrhandt : p.104 pl. 7; fig. 4a-c [upper Eocene, Bruderndorf, Austria]
1962 Globigerina linaperta Finlay. - Saito : p.216 pl. 32; fig. 4a-c [middle Eocene Zone
E12, Haha-Jima, Bonin Islands, western Pacific Ocean]
1966 Globigerina linaperta Finlay. - McTavish : p.24 pl. 2; fig. 29, 31-33 [upper Eocene,
Priabonian, British Solomon Islands, western Pacific
Ocean]
1971 Globigerina (Subbotina) linaperta Finlay. - Jenkins : p.162 pl. 18; fig. 551-554 (551-553 reillustrations of holotype, 554 topotype)
? 1972 Subbotina oregonensis McKeel & Lipps. - McKeel & Lipps : p.81 pl. 4; fig. 3a-c [middle to upper Eocene Coaledo Fm., Oregon]
p 1975 Globigerina linaperta Finlay. - Stainforth et al. : p.201 fig. 63, 1a-c (partim; not fig.
63, 2-5), (reillustration of holotype)
1975 Globigerina linaperta Finlay. - Toumarkine : p.742 pl. 1; fig. 1, 2 [middle Eocene
Zone El011 l , DSDP Site 313, northeastern Mid-Pacific
Mountains, western Pacific Ocean]
non 1976 Globigerina (Eoglobigerina) linaperta Finlay. - Hillebrandt : p.331 pl. 1; fig. 14, 15 [= Subbolina eocaena (Guembel)]
1977 Subbotina linaperta Finlay. - Poore & Brabb : p.269 pl. 5, fig. 8 [upper Eocene Zone E14/15, Twobar shale Member, San Lorenzo Fm., Santa Cruz Mountains, California];
pl. 5, fig. 9 [middle Eocene Zone P13114,
Butano Sandstone, Santa Cruz Mountains, California]
p 1979 Subbotina linaperta Finlay. - Blow : p.1275 pl. 124; fig. 9 [lower Eocene Zone E5, DSDP Hole 47.2,
Shatsky Rise, northwest Pacific Ocean] [Not pl. 91: fig.
8; pl. 158: fig. 8; pl. 160, figs. 6-8; pl. 177: figs. 4-6; pl.
240: Figs. 5, 6.]
1983 Globigerina linaperta Finlay. - Krasheninnikov & Basov : p.838 pl. 2; fig. 8-11 [middle Eocene,
DSDP Site 5 11, Falkland Plateau, South Atlantic Ocean]
1984 Subbotina linaperta Finlay. - Belford : p.14 pl. 23; fig. 9-15 [lower Eocene Zone
E617, Papua, New Guinea]
1985 Globigerina linaperta Finlay. - Snyder & Waters : p.463 pl. 2; fig. 1-3 [lower
Eocene Zone E5, DSDP Hole 548A, Goban Spur, eastern North Atlantic Ocean]
1990 Subbotina linaperta Finlay. - Stott & Kennett : p.559 pl. 7; fig. 9 [middle Eocene Zone AE8, ODP Hole 689B,
Maud Rise, Weddell Sea, Antarctic Ocean]
1991 Subbotina linaperta Finlay. - Huber : p.440 pl. 5; fig. 1 [middle Eocene Zone AE8, ODP
Hole 738B, Kerguelen Plateau, southern Indian Ocean]
1992 Subbotina linaperta Finlay. - Berggren : p.583 pl. 3; fig. 1-4 [middle Eocene, ODP
Hole 748B, southern Kerguelen Plateau, southern Indian
Ocean]
2006 Subbotina linaperta Finlay. - Pearson et al. : p.144 pl. 6.14; fig. 1-16 (Pl. 6.14, Figs. 1-3: new SEMs of paratype of Globigerina linaperta Finlay)
|
||||||
Specimen: | ||||||
Geological and Nuclear Science Institute, Lower Hutt, New Zealand, Inventory number: TF 1078/1 |
||||||
References: | ||||||
Finlay,H.J. (1939): Khalilov,D.M. (1956): Hornibrook,N. (1958): Saito,T. (1962): Gohrhandt,K.H.A.. (1962): McTavish,R.A.. (1966): Jenkins,D.G. (1971): McKeel,D.R.. and Lipps,J.H. (1972): Toumarkine,M. (1975): Stainforth,R.M.; Lamb,J.L.; Luterbacher,H.P.; Beard,J.H. and Jeffords,R.M. (1975): Hillebrandt,A. (1976): Poore,R.Z. and Brabb,E.E.. (1977): Blow,W.H. (1979): Krasheninnikov,V.A. and Basov,I.A. (1983): Belford,D.J. (1984): Snyder,S.W. and Waters,V.J. (1985): Stott,L.D. and Kennett,J.P. (1990): Huber,B.T. (1991): Berggren,W.A. (1992): Pearson,P.N.; Olsson,R.K.; Hemleben,C.; Huber,B.T. and Berggren,W.A. (2006): |
||||||
Anonymous: Unedited TaxonConcept data | ||||||
This work is licensed under a Creative Commons Attribution 2.5 License. | ||||||
Back to Search | ||||||
Taxon relations
Ranking (experimental) |