Taxon Concept provided by | |
Home | Search |
TaxonConcept data set details: | ||||||
Back to Search | ||||||
Anonymous: Unedited TaxonConcept data | ||||||
Notice: This catalogue page may contain unedited data.
| ||||||
Species Hoploscaphites constrictus Sowerby 1817 | ||||||
|
||||||
Diagnosis / Definition: | ||||||
Kennedy (1986): Types. Sowerby obviously possessed more than one specimen of H. constrictus from Ste Colombe; Crick (1898, p. 12) and Spath (1953, p. 13) referred to BMNH 43988 (PI. 15, figs. 18-20) "as the type and the original of Sowerby's pl. A, fig. I, but this bears no resemblance to the figure (see text-fig. 9). Instead, as Phillips (1977, p. 90) notes, BMNH C36733 (PI. 13, figs. 20-22) purchased from Mrs M. Sowerby in 1935 (together with the originals offigs. 2 and 3 on the same plate) bears aclose resemblance to the figure.Tt is herein designated lectotype ofthe species. BMNH C43988 is a paralectotype, as are C70645-C70647. Material. Fifty specimens in the BMNH, EMP, FSL, FSM, FSR, MNHG, MNHH, MNB, MNHP, OUM, and SP Collections, including the original of Schlüter (1872, pl. 28, figs. 6-8) (MNB unreg.; PI. 13, figs. 1-3), d'Orbigny (1842, pI. 129, figs. 8 and 9) (MNHP d'Orbigny Collection no. 7194; PI. 13, figs. 16 and 17), and de Grossouvre (1894, pI. 31, figs. 1 and 2) (EMP unreg.; PI. 14, figs. 13-15). Localities mentioned are Manche, Fresville, Orglandes, Ste Colombe, Nehou, Veuville, Chef-du-Pont, Port Filiolet, and Cussy. Description. Highly variable and strongly dimorphie. Phragmoeone very involute with tiny umbilieus. Whorl seetion varies from eompressed (whorl breadth to height ratio down to 0,5) and fiat-sided with broadly rounded ventrolateral shoulders and fiattened venter (PI. 13, figs. 8-13; PI. 14, figs. 1-3,24-26), to fat with swollen inner fianks, convergent outer flanks, broadly rounded shoulders, and somewhat fiattened venter (whorl breadth to height ratio up to 0,95) (PI. 15, figs. 1-3, 10-31). Sixteen to twenty primary ribs arise at umbilical seam, are flexuous, vary fromfeeblyconcave (PI. 13, fig. 11; PI. 15, fig. 16) to straightand prorsiradiate(p1. 13, fig. 9; PI. 15, fig. 22) on inner flank, are generally convex at mid-flank, concave on outer flank and ventrolateral shoulder, and feebly convex over venter. They subdivide low on flank, where long intercalatories also arise (e.g. PI. 15, fig. 19); intercalatories and secondaries branch a second time (e.g. PI. 13, fig. 12; PI. 15, fig. 2) on outer flank, where additional short intercalatories also insert, with much variation in style and strength between individuals; from fifty- five (pI. 15, fig. 16) to around eighty (PI. 14, fig. 17) ribs on venter per whorl, ribs feebler and more numerous in compressed individua1s (pI. 13, figs. 8-12; PI. 14, figs. 8, 17,25, 28, 32, 35) and generally fewer and coarser in more inflated ones (PI. 15, figs. 16, 19,22,28, 30), with a few exceptions (PI. 15, figs. 2 and 13). Early phrag¬mocone whorls devoid of tuberc1es. Inflated individuals have up to five pointed ve-ntral tuberc1es on last part of phragmocone (PI. 15, fig. 19), with one or two non-tubercu1ate ribs between and a similar number of tiny nodes on some compressed individuals (PI. 13, fig. 2; PI. 14, fig. 25). Other compressed individua1s have tiny nodes on every rib over last part of phragmocone (PI. 14, figs. 1-3); in others they appear lacking (PI. 14, figs. 7-9, preservation is poor, however). A few specimens show umbilico-lateral or inner lateral bulla or bullae on last part ofphragmocone (PI. 15, figs. 19 and 30). Body-chambers vary widely. In compressed microconchs (PI. 15, figs. 1-9) ribbing becomes very flexuous, primary ribs develop sharp bullae at umbilical shoulder, and increase by branching and intercalation gives dense ribs on venter (most or all of which bear tiny tubercles on shaft). Ornament declines on final hook, tuberc1es disappear, and flanks are ornamented by fine striae only (PI. 14, figs. 2, 5, 8). Macroconchs of this type are essentially similar (pI. 14, figs. 19 and 20). These forms grade into bluntly decorated individuals with broader whorl section, like lectotype (a macroconch: PI. 13, figs. 20-22) where long, low umbilical bullae give rise to groups of ribs that increase by branching and intercalation to link, in groups, to pointed ventrolateral nodes (pI. 13, fig. 6; PI. 14, fig. 28) which, in some, elongate into prominent c1avi (e.g. PI. 15, figs. 4-9, microconchs). These specimens lack ventral ribs, unlike more compressed individuals (compare PI. 14, figs. 3 and 15), and maintain distinct branching and intercalated ribs to aperture, although tuberc1es decline and are lost on final part ofhook. A few specimens ofthis type (inc1uding holotype) develop low swelling between ventral clavi on early part of body-chamber (e.g. PI. 14, fig. 26). The most inflated body-chambers are decorated by distinct umbilical or innerlateral bullae (pI. 15, figs. 18-20, 29-31) that may persist to aperture (pI. 13, fig. 18; PI. 15, fig. 19), but these are linked by every transition to specimens in which bullae are incipient only (e.g. PI. 14, fig. 28). Ribs arise in groups from these bullae, branch and intercalate, and loop to ventral clavi which are separated by smooth zones or effacing secondaries and interca1atories (PI. 15, figs. 19 and 30). In some specimens a distinct siphonal swelling is crossed by fine riblets that 100p between ventral c1avi (PI. 15, fig. 18); in others ventral region is virtually smooth between c1avi. Ribs and tuberc1es may decline towards aperture, or persist (PI. 15, figs. 19 and 31). Suture lines (text-fig. lIA-H) vary in detail only and are consistently simple and little incised. Ward & Kennedy (1993): Description.- Material fragmentary. Best phragmocone is 15 mm in diameter, and crushed flat. Coiling very involute, with high whorls. Ornament of numerous crowded flexuous prorsiradiate ribs. They arise at umbilical seam and strengthen across umbilical wall. They are prorsiradiate on shoulder, straight and prorsiradiate on inner flank, and feebly concave on middle and outer flank. Ribs branch once or twice both high and low on flanks, and shorter ribs intercalate at several levels on flank such that there are many more umbilical than ventral ribs. Body chamber fragments show well-developed umbilicolateral bullae giving rise to groups of delicate straight prorsiradiate ribs that increase by branching and intercalation on outermost flank and ventrolateral shoulder. |
||||||
Discussion / Comments: | ||||||
Kennedy (1986): Discussion. I ean draw no lines between the specimens from the Calcaire a Baculites; there appears to be every gradation in whorl eompression, ribbing, and tubereulation style. Scaphites multinodosus (Hauer, 1858) (p. 9, pI. I (2), figs. 7 and 8) from the Maastriehtian of Neuberg, Styria, is a small maeroeoneh of the present species. It oeeurs with Pachydiscus neubergicus (Hauer, 1858) and is significantly older than the present material. (The S. multinodosus ofHauer 1866, p. 306, pI. 1, figs. 7 and 8 is a Trachyscaphites; fide Cobban and Seott 1964.) I agree with Birkelund (1982) and Makowski (1963) that S. niedzwiedzkii Uhlig, 1894 (p. 220, text-fig. 2) is a microeoneh ofthe present speeies. H. c. crassus Lopuski, 1911 (pp. 115, 134, pI. 2, figs. 5 and 6; pI. 3, figs. land 2)ean be matehed with the eoarsely ribbed speeimens described here (PI. 15, figs. 18-20,29-31) and is inseparable from constrictus even at sub-specifie level. H. c. vulgaris Nowak, 1911 (p. 583, pI. 32, fig. 6?; pI. 33, figs. 8-12) is equally inseparable. Mesoscaphites grossouvrei Atabekian, 1979 (p. 523) (nomen nudum) has, as holotype, the original of de Grossouvre (1894, pI. 31, fig. I). This specimen (PI. 15, figs. 29-31) is merely a coarsely ribbed variant of' crassus' type and is Upper, rather than Lower Maastrichtian as suggested by Atabekian. 'M.' kneri Atabekian, 1979 (p. 523) (nomen nudum) has the original ofKner (1852, pI. 15, fig. 13) as holotype and is also a constrictus. H. c. anterior Blaszkiewicz, 1980 (p. 36, pI. 17, fig. 5; pI. 18, figs. 4-10) from the Lower Maastriehtian of Poland was separated from H. constrictus sensu stricto on the basis of a smaller apertural angle (95°), 'not so elose contaet ofbody ehamber and phragmoeone and a smaller degree of flattening of the ventral side' (Blaszkiewiez 1980, p. 36), and a lower stratigraphie position. The holotype is no more than a variant ofthe present species, resembling elosely thejndividual shown in Plate 13, figs. 5-7, and is treated as a synonym. H. tenuistriatus (Kner, 1848) (p. 10, pI. 1, fig. 5), originally described from Kieselka near Lemberg (now Lvov), characterizes a level weil below that of the present material (fide Birkelund 1982). It has been treated as aseparate species (as by Kner; Favre 1869; Birkelund 1982) or as a subspeeies of constrictus (as by Nowak 1909, 1911; Wolansky 1932; Naidin 1974). It has a rather coarsely ribbed phragmocone and a very finely ribbed body-chamber lacking nodes. The last two features separate it from constrictus and I regard it as specifically distinct, although Nowak (1911, pI. 33, fig. 13) figured what he believed to be tenuistriatus with nodes. Acanthoscaphites schmidi Birkelund, 1982, from the middle of the Maastrichtian at Hemmoor, north-west Germany, seems rather to be a Hoploscaphites. The holotype (Birkelund 1982, pI. 1, figs. 7-9) is a microconch which has ventral and weak siphonal tubereIes on the phragmocone and early body-chamber, with very fine ribs on the venter and ventrolateral parts of the body¬chamber. As deseribed above, some H. constrictus develop a feeble siphonal node (e.g. PI. 15, fig. 18) while some speeimens, discussed further below (e.g. PI. 16, figs. 1-6, 11-14) are very elose indeed to Birkelund's speeies but have a simple, Hoploscaphites suture; these may be further variants of constrictus, as siphonal tubercles appear more than onee in Upper Cretaeeous Scaphites. holotype is no more than a variant ofthe present species, resembling elosely thejndividual shown in Plate 13, figs. 5-7, and is treated as a synonym. H. tenuistriatus (Kner, 1848) (p. 10, pI. 1, fig. 5), originally described from Kieselka near Lemberg (now Lvov), characterizes a level weil below that of the present material (fide Birkelund 1982). It has been treated as aseparate species (as by Kner; Favre 1869; Birkelund 1982) or as a subspeeies of constrictus (as by Nowak 1909, 1911; Wolansky 1932; Naidin 1974). It has a rather coarsely ribbed phragmocone and a very finely ribbed body-chamber lacking nodes. The last two features separate it from constrictus and I regard it as specifically distinct, although Nowak (1911, pI. 33, fig. 13) figured what he believed to be tenuistriatus with nodes. Acanthoscaphites schmidi Birkelund, 1982, from the middle of the Maastrichtian at Hemmoor, north-west Germany, seems rather to be a Hoploscaphites. The holotype (Birkelund 1982, pI. 1, figs. 7-9) is a microconch which has ventral and weak siphonal tubereIes on the phragmocone and early body-chamber, with very fine ribs on the venter and ventrolateral parts of the body¬chamber. As deseribed above, some H. constrictus develop a feeble siphonal node (e.g. PI. 15, fig. 18) while some speeimens, discussed further below (e.g. PI. 16, figs. 1-6, 11-14) are very elose indeed to Birkelund's speeies but have a simple, Hoploscaphites suture; these may be further variants of constrictus, as siphonal tubercles appear more than onee in Upper Cretaeeous Scaphites. holotype is no more than a variant ofthe present species, resembling elosely thejndividual shown in Plate 13, figs. 5-7, and is treated as a synonym. H. tenuistriatus (Kner, 1848) (p. 10, pI. 1, fig. 5), originally described from Kieselka near Lemberg (now Lvov), characterizes a level weil below that of the present material (fide Birkelund 1982). It has been treated as aseparate species (as by Kner; Favre 1869; Birkelund 1982) or as a subspeeies of constrictus (as by Nowak 1909, 1911; Wolansky 1932; Naidin 1974). It has a rather coarsely ribbed phragmocone and a very finely ribbed body-chamber lacking nodes. The last two features separate it from constrictus and I regard it as specifically distinct, although Nowak (1911, pI. 33, fig. 13) figured what he believed to be tenuistriatus with nodes. Acanthoscaphites schmidi Birkelund, 1982, from the middle of the Maastrichtian at Hemmoor, north-west Germany, seems rather to be a Hoploscaphites. The holotype (Birkelund 1982, pI. 1, figs. 7-9) is a microconch which has ventral and weak siphonal tubereIes on the phragmocone and early body-chamber, with very fine ribs on the venter and ventrolateral parts of the body¬chamber. As deseribed above, some H. constrictus develop a feeble siphonal node (e.g. PI. 15, fig. 18) while some speeimens, discussed further below (e.g. PI. 16, figs. 1-6, 11-14) are very elose indeed to Birkelund's speeies but have a simple, Hoploscaphites suture; these may be further variants of constrictus, as siphonal tubercles appear more than onee in Upper Cretaeeous Scaphites. Other Hoploscaphites species bear little resemblance to the present form and are unlikely to be confused with it. S. constrictus is held to range from just above the base of the Maastrichtian to the top of the stage, and Birkelund (1979, 1982) has provided the only attempt at recognizing vertical changes in ornament on the basis of material from the Danish Chalk. Forms referred to the 'variety' crassus, which occur in the present material, are restricted to the Belemnella casimirovensis Zone, while there is a decrease in the number of ribs on the last 10 mm of the body-chamber as one ascends the Maastrichtian, from six (in 'var. erassus') to about ten in finer ribbed individuals from the Calcaire ä Baculites (much as in the Danish casimirovensis Zone material). The range of size in dimorphs of this species was measured by Makowski (1963) who described a collection of thirty-two specimens from the Upper Maastrichtian of Kazimiez on the Vistula. The twenty-two macroconchs (69 %) ranged from 47 to 68 mm; the ten microconchs (31 %) from 22 to 35 mm. Of twenty-three measurable specimens from the Calcaire ä Baculites, fifteen (65%) are macroconchs ranging from 39 to 56 mm and eight (35%) microconchs, ranging from 25 to 34•5 mm length. The largest complete specimen is the lectotype which has a phragmocone 34•5 mm in diameter. BMNH C70647 (PI. 15, figs. 10-13) is a complete phragmocone 43 mm in diameter, suggesting a complete shell 70 mm long, so that there is a fair agreement with the Polish material. Ward & Kennedy (1993): Types.- Lectotype, by the subsequent designation of Kennedy, 1986c (p. 68) is BMNH C36733, the original of J. Sowerby, 18 17, Pl. A, fig. 1. Paralectotypes are BMNH C43988 and C70645-70647; all are refigured by Kennedy (1 986c), and are from the upper Maastrichtian Calcaire a Baculites of the Cotentin Peninsula, Manche, France. Discussion.- Although fragmentary, the Biscay material shows sufficient features to allow specific determination with confidence, as can be seen from a comparison with better preserved material from the Petites-Pyrénées (Haute-Garonne), shown in Figure 44.1-44.6. We think it very likely that the poorly preserved Scaphites (Indoscaphites) pavana (Forbes)? of Wiedmann (1969, Pl. 3, figs. 3, 6) from Zumaya may be juveniles of the present species but cannot be certain. The type material of Hoploscaphites constrictus, material from the Maastrichtian type area, and from the Petites-Pyrénées is reviewed by Kennedy (1986b, c, 1987), to which reference should be made. We see no reason to vary the conclusions reached there that the lectotype of H. constrictus is a macroconch, and the form described as Scaphites niedzwiedzkii Uhlig, 1894 (p. 220, fig. 2) is the microconch of constrictus, and see no support whatsoever for the views of Van Der Tuuk (1987) that they represent subspecies in which both macro- and microconchs occur. Equally, we believe it more rational to treat H. tenuistriatus (Kner, 1848) (see revision in Kennedy, 1987) as a distinct short-lived species rather than a subspecies of constrictus. The Hoploscaphites sp. of Van Der Tuuk (1987, p. 77, figs. 4, 17a, b) with siphonal tubercles from the upper Maastrichtian of Limburg, the Netherlands, was thought to be possibly transitional between Hoploscaphites and Acanthoscaphites by its author. It is in our view no more than a malformed H. constrictus, and, even it this were not the case, could hardly be transitional between these genera as Acanthoscaphites appears at the base of the Maastrichtian. Occurrence.- In the Biscay sections Hoploscaphites constrictus occurs in Member 4 (upper Maastrichtian) at Zumaya. Elsewhere, the species ranges throughout almost all the Maastrichtian. Thus at Kronsmoor in north Germany, the first specimen appears 3.5-5.0 m above the base of the Belemnella lanceolata zone, while in Denmark it is common in the topmost hardground of the Maastrichtian white chalk that is immediately overlain by the Paleocene Fish Clay. It is known from the Petites- Pyrénées (Haute-Garonne), Tercis (Landes), and the Calcaire a Baculites of the Cotentin Peninsula (Manche), France, northern Spain, the Nekum and Meersen Chalks of the Maastricht region in Belgium and the Netherlands, Germany, Denmark, southern Sweden, Poland, Austria (Styria), Czechoslovakia, Bulgaria, and the former USSR (Donbass, Carpathians, Transcaspia, Kopet Dag). Machalski (2005): TYPE MATERIAL.- Specimen BMNH C36733, a macroconch, from the up− per lower Maastrichtain, Ste Colombe, Cotentin (Manche, France) was designated lectotype by Kennedy (1986: pl. 13: 20–22). |
||||||
Systematics: | ||||||
38 Ordo Ammonoidea Subordo Ancyloceratina Superfamilia Scaphitaceae Familia Scaphitidae Subfamilia Scaphitinae Genus Hoploscaphites Species Hoploscaphites constrictus 39 Ordo Ammonoidea Subordo Ancyloceratina Superfamilia Scaphitaceae Familia Scaphitidae Subfamilia Scaphitinae Genus Hoploscaphites Species Hoploscaphites constrictus 51 Familia Scaphitidae Genus Hoploscaphites Species Hoploscaphites constrictus |
||||||
Synonym list: | ||||||
Kennedy (1986): 1812 Ammonites constrictus Sowerby. - Sowerby : p.189 pl. A, fig. 1
1837 Ammonites constrictus Sowerby. - Pusch : p.159 pl. 14, fig. 3
1842 Scaphites constrictus d'Orbigny. - d'Orbigny : p.522 pl. 129, figs. 8-11
1848 Scaphites compressus d'Orbigny. - Kner : p.10 pl. 1, fig. 4
1850 Scaphites constrictus d'Orbigny. - Alth : p.207 pl. 10, figs. 29-30
1850 Scaphites constrictus d'Orbigny. - d'Orbigny : p.214
1851 Ammonites monteleonensis Leymerie. - Leymerie : p.198 pl. 11 (C), fig. 3 and 4
1852 Scaphites constrictus d'Orbigny. - Kner : 300 (8) pl. 15 (1), fig. 13
1858 Scaphites n sp. multinodosus Hauer. - Hauer : p.9 pl. 1 (2), figs. 7 and 8
1861 Scaphites constrictus d'Orbigny. - Binkhorst : p.38 pl. 5d, fig. 6a-h (with synonymy)
1861 Scaphites multinodosus Hauer. - Gümbel : p.574
? 1861 Scaphites falcifer Guembel. - Gümbel : p.574
1861 Scaphites ornatus Roem. - Gümbel : p.576
1869 Scaphites constrictus d'Orbigny. - Favre : p.18 pl. 5, figs. 1-4
1871 Scaphites constrictus d'Orbigny. - Schlüter : p.92 pl. 28, figs. 5-9 (with synonymy)
non 1873 Scaphites sp. indet. cf. ? Scaphites constrictus Sowerby. - Redtenbacher : p.130 pl. 30, fig. 12
1885 Scaphites constrictus d'Orbigny. - Moberg : p.27 pl. 3, figs. 3-5
1891 Scaphites constrictus d'Orbigny?. - Böhm : p.48 pl. 1, fig. 10 a
1894 Scaphites constrictus d'Orbigny?. - Grossouvre : p.248 pl. 31, figs. 1, 2, 7, 8
1894 Scaphites niedzwiedzkii Uhlig?. - Uhlig : p.220 text-fig. 2
1899 Scaphites constrictus d'Orbigny?. - Semenov : p.134 pl. 5, fig. 8
1902 Scaphites constrictus d'Orbigny?. - Ravn : p.254 pl. 3, fig. 9
1907 Scaphites constrictus d'Orbigny?. - Wisniowski : p.193 pl. 17, fig. 2b
1907 Scaphites constrictus var. Niedzwiedzkii Uhlig. - Wisniowski : p.193 pl. 17, fig. 2a
1908 Scaphites constrictus d'Orbigny. - Grossouvre : p.36 pl. 11, figs. 3-7
1909 Scaphites constrictus d'Orbigny. - Nowak : p.773 pl. 1, fig. 1
? 1909 Scaphites cf. niedzwiedzkii Uhlig. - Böhm : p.54 pl. 1, fig. 3
1911 Scaphites constrictus d'Orbigny. - Lopuski : 113, 133 pl. 2, figs, 2 and 4
1911 Scaphites constrictus var. crassus Lopuski. - Lopuski : 115, 134 pl. 2, figs. 5 and 6; pl. 3, figs. 1 and 2
1911 Scaphites sp. . - Lopuski : p.117 pl. 3, fig. 4
1911 Scaphites sp. . - Lopuski : p.118 pl. 3, fig. 3
1911 Scaphites sp. . - Lopuski : p.118 pl. 3, fig. 5
1911 Hoploscaphites constrictus vulgaris Nowak. - Nowak : p.583 pl. 32, fig. 6; pl. 33, figs. 8-12
1911 Hoploscaphites constrictus-tenuistriatus Kner. - Nowak : p.585 pl. 33, fig. 14 (non 13)
1915 Scaphites constrictus d'Orbigny. - Frech : 562 (pars) text-figs. 9 and ?10
1925 discoscaphites constrictus Sowerby. - Diener : p.210 (with synonymy)
1932 Hoploscaphites constrictus Sowerby. - Wolansky : p.10 pl. 1, figs. 10 and 12
1951 discoscaphites constrictus Sowerby. - Mikhailov : p.90 pl. 17, figs. 77-80 (with synonymy)
1951 Discoscaphites constrictus var. niedzwiedzkii Uhlig. - Mikhailov : p.93 pl. 15, fig. 65; pl. 17, figs. 81 and 82; pl. 18, fig. 85
1959 discoscaphites constrictus Sowerby. - Naidin & Shimanskij : p.196 pl. 6, figs. 7 and 8
1959 Discoscaphites constrictus var. niedzwiedzkii Uhlig. - Naidin & Shimanskij : p.197 pl. 6, figs. 1-4
1966 Scaphites (Holoscaphites) constrictus Sowerby. - BIRKELUND : 741 et seq. test-figs. 1, 7, 8
1974 Hoploscaphites constrictus constrictus Sowerby. - Naidin : p.173 pl. 58, figs. 7-9; pl. 61, figs. 2-4
1974 Holoscaphites constrictus niedzwiedzkii Uhlig. - Naidin : p.174 pl. 58, figs. 10 and 11
1979 Hoploscaphites constrictus Sowerby. - BIRKELUND : p.55 text-figs. 2 (pars), 3d, e
1979 Holoscaphites constrictus crassus Lopuski. - BIRKELUND : p.55
1979 Mesoscaphites grossouvrei Atabekian. - ATABEKIAN : 523 (nom. nud)
1979 Mesoscaphites kneri Atabekian. - ATABEKIAN : p.523 (nom. nud.)
1980 Hoploscaphites constrictus anterior Blaszkiewicz. - BLASZKIEWICZ : p.36 pl. 17, fig. 5; pl. 18, figs. 4-10
1980 Holoscaphites constrictus crassus Lopuski. - BLASZKIEWICZ : p.37 pl. 18, figs. 1-3, 11-14
1982 Hoploscaphites constrictus Sowerby. - BIRKELUND : p.19 pl. 3, figs. 1-14
1982 Hoploscaphites constrictus constrictus Sowerby. - Tsankov : p.24 pl. 7, figs. 6-8
? 1982 Scaphites (Holoscaphites) constrictus Sowerby. - Martinez : p.172 pl. 30, fig. 6
1983 Hoploscaphites constrictus Sowerby. - Riccardi : p.9
1986 Hoploscaphites constrictus Sowerby. - Kennedy : p.84 pl. 13, figs. 1-13, 16-24; pl. 14, figs. 1-38; pl. 15; text-figs. 9, 11A-H
Ward & Kennedy (1993): 1812 Ammonites constrictus Sowerby. - Sowerby : p.189 pl. A, fig. 1
1986 Hoploscaphites constrictus Sowerby. - Kennedy : p.1019 pl. 3, fig. 1, 9-12;
pl. 4, fig. 1-19;
pl. 5, fig. 1-17,24-26
1986 Hoploscaphites constrictus Sowerby. - Kennedy : p.64 pl. 13, fig. 1-13, 16-24;
pl. 14, fig. 1-38;
pl. 15;
text-fig. 9, 11A-H (with full synonymy)
1986 Hoploscaphites constrictus Sowerby. - Kennedy : fig. 10G, H, K, L
1987 Hoploscaphites constrictus Sowerby. - Kennedy : p.197 pl. 31, fig. 1, 8-26;
pl. 32, fig. 1-12, 18-21
1987 Hoploscaphites constrictus Sowerby. - Kennedy & Summesberger : p.34 pl. 6; fig. 6-24
1987 Hoploscaphites constrictus Sowerby. - Tuuk : p.64
1987 Hoploscaphites constrictus Sowerby. - Jagt : p.1 fig. 1-6
1987 Hoploscaphites constrictus constrictus Sowerby. - Tuuk : p.73 fig. 5-7, 11, 20a-c, 21a-c, 23a-c
1987 Hoploscaphites constrictus niedzwiedzkii Uhlig. - Tuuk : p.76 fig. 9, 10, 24a-c
1987 Hoploscaphites indet. constrictus ssp. . - Tuuk : p.77 fig. 8, 25a, b
1987 Hoploscaphites sp. . - Tuuk : p.77 fig. 4, 17a, b
1988 Hoploscaphites constrictus Sowerby. - Machalski & Walaszczyk : p.67 fig. 2a, b
1989 Hoploscaphites constrictus Sowerby. - Kennedy : fig. 9a-l
1993 Hoploscaphites constrictus Sowerby. - Ward & Kennedy : p. 50, 51, 52 fig. 43.1, 43.2, 44.1-44.6, 45.3
|
||||||
Was used in synonym list of: | ||||||
Stratigraphy - relative ages: | ||||||
upper Maastrichtian - lower Maastrichtian: Ward & Kennedy (1993) upper Maastrichtian - lower Maastrichtian: Kennedy (1986) |
||||||
References: | ||||||
Sowerby,J.. (1812): Pusch,G.G.. (1837): d'Orbigny,A. (1842): Kner,R.. (1848): d'Orbigny,A. (1850): Alth,A.. (1850): Leymerie,M.A.. (1851): Kner,R.. (1852): Hauer,F.. (1858): Binkhorst,J.T.. (1861): Gümbel,v.C.W.. (1861): Favre,E.. (1869): Schlüter,C.. (1871): Redtenbacher,A.. (1873): Moberg,J.C.. (1885): Böhm,J. (1891): Grossouvre,d.A.. (1894): Uhlig,V.. (1894): Semenov,V.P.. (1899): Ravn,J.P.J.. (1902): Wisniowski,T.. (1907): Grossouvre,d.A.. (1908): Nowak,K.. (1909): Böhm,J. (1909): Nowak,K.. (1911): Lopuski,C.. (1911): Frech,F.. (1915): Diener,C.. (1925): Wolansky,D.. (1932): Mikhailov,N.P.. (1951): Naidin,D.P.. and Shimanskij,V.N.. (1959): BIRKELUND,T.. (1966): Naidin,D.P.. (1974): BIRKELUND,T.. (1979): ATABEKIAN,A.A.. (1979): BLASZKIEWICZ,A.. (1980): Tsankov,C.V.. (1982): BIRKELUND,T.. (1982): Martinez,R.. (1982): Riccardi,A.C.. (1983): Kennedy,W.J.. (1986): Kennedy,J.W.. (1986): Kennedy,W.J.. (1986): Kennedy,W.J.. (1987): Tuuk,V.V.L.. (1987): Kennedy,W.J.. and Summesberger,H.. (1987): Jagt,J.M.. (1987): Machalski,M.. and Walaszczyk,I.. (1988): Kennedy,W.J.. (1989): Ward,P.D.. and Kennedy,W.J.. (1993): Machalski,M.. (2005): |
||||||
Anonymous: Unedited TaxonConcept data | ||||||
This work is licensed under a Creative Commons Attribution 2.5 License. | ||||||
Back to Search | ||||||
Taxon relations
Ranking (experimental) |